Acknowledgement of Country

Federation University Australia acknowledges the Traditional Custodians of the lands and waters where our campuses, centres and field stations are located and we pay our respects to Elders past and present, and extend our respect to all Aboriginal and Torres Strait Islander and First Nations Peoples.

What's new?

Short papers and posters submissions are still open. More information (including sample short paper).

Congratulations to authors whose papers have been accepted. Please download the instructions for submitting your final paper after acceptance.

Important dates and CFP

Short papers and posters:

20 July

6 August 2021

Regular papers:

30 May 2021

Paper acceptance:

15 July 2021

Final paper submission:

6 August 2021


Conference format: Virtual (online).

Short papers (will be included in a separate companion non-IEEE online website)

Short papers may present preliminary findings from work in progress, industry perspectives on issues relevant to CIBCB 2021. Short papers should present and discuss a clear and focused central idea, incorporate discussion of relevant research or context, and provide references, as necessary. Short papers must adhere to the IEEE conference template and have a length of no more than two (2) pages. Papers must be in PDF and written in English. Short papers will be desk reviewed by the CIBCB 2021 organisational committee. Submission implies the willingness of at least one of the authors to register and present the paper at the conference.

Download the sample short paper.

Inauguration

Amanda Caples, Victoria State Government, Australia

Dr Amanda Caples BSc Hons PhD GAICD is Victoria’s Lead Scientist, a ‘catalyst’ responsible for working across the Victorian Government to identify opportunities for economic outcomes by building relationships between business, the research sector and government. Amanda brings to the role broad experience in technology commercialisation, public policy development and governance of public and private entities.

Picture of Dr Amanda Caples

Keynote speakers

Pierre Baldi, University of California, Irvine, USA

Deep Learning in the BioMedical Sciences
The process of learning is essential for building natural or artificial intelligent systems. Deep learning-essentially learning in complex systems comprised of multiple processing stages- is at the forefront of machine learning. We will first provide a brief historical overview of artificial neural networks and deep learning, starting from their early origins in the 1940s and their connections to biological neural networks and learning. We will then demonstrate several examples of how deep learning methods can be applied to problems across the life-sciences and their multiple scales, including: drug discovery, protein structure prediction, analysis of omic and clinical data, and biomedical imaging.

Picture of Professor Pierre Baldi
Nikola Kasabov, Auckland University of Technology, New Zealand

Neuromorphic integration of bio- and neuroinformatics methods and data
Integrating the methods and data from bioinformatics and neuroinformatics related to the same problems and tasks would result in a better accuracy of classification and prediction on multimodal data, better diagnosis, prognosis and prevention of disease and finally more efficient personalised treatment for the best individual outcome. The talk presents computational frameworks based on spiking neural network (SNN) and NeuCube as well as methods to achieve this goal. The talk is illustrated on problems and data related to neurological disorders and cognitive studies.

Picture of Prof Nik Kasabov
Saman Halgamuge, The University of Melbourne, Australia

Bioinformatics with Automated and Interpretable Deep Learning
Automatic machine learning (Auto-ML) is the automation of the Deep Neural Networks design. Existing Auto-ML methods have attempted to optimize every step of the data analysis pipeline including data preparation, feature engineering, model generation, training, and evaluation. Among them, Neural Architecture Search (NAS) methods explicitly find DNN architectures for a given supervised learning task. Our research shows that automatic design of interpretable Neural Networks is possible using both Unsupervised Learning and Supervised Learning.

Picture of Professor Saman Halgamuge

Committee

Patron-in-chief

Vice Chancellor, Federation University, Australia

International advisory committee

Professor and Chief, Bioinformatics Department State University of New York (SUNY), USA
Deputy Vice Chancellor (Research and Innovation), Federation University, Australia
Dean (School of Engineering, IT and Physical Sciences), Federation University, Australia
Professor of Knowledge Engineering, Auckland University of Technology, New Zealand
Professor,University of Angers, and Former Director, LERIA, France
Senior Deputy Dean and Director of Research, Monash University, Australia

Organising committee

General chair
Program chair
Jennifer Hallinan

BioThink Pty Ltd, Australia

Technical co-chairs
Tutorial chair
Special session chair
Short paper chair
PhD consortium chair
Proceedings chair
Finance chairs
Steven Corns
Missouri University of Science and Technology, USA
Industry liaison chair
Local arrangement chairs
Tina Bradshaw
Publicity chairs
Buddhika Kasturiachy
Web chair

Tutorials

Representation in Bioinformatics

This tutorial will explore the importance of the choice of representation in applying evolutionary computation to problems in bioinformatics and computational biology. The tutorial will work through a series of examples that illustrate the importance of representation while giving a variety of representations. It will cover writing a helpful fitness function, which permits a simple representation to solve a hard problem; the use of Conway crossover; side effect machines; the problem of network induction; and representations that permit the reshaping of fitness landscapes.

Instructor

Deep learning approaches for de novo antiviral therapeutic monoclonal antibody design

Therapeutic monoclonal antibodies (therapeutic mAbs) have seen great promise in their application for both the treatment and prevention of viral infection in human patients. Unfortunately, the wet lab techniques required for the discovery of novel therapeutic mAbs are time consuming and costly. Advances in deep learning now make it feasible to design antibodies in-silico, narrowing down the design space before wet-lab validation and promising to reduce the incurred time and cost of the discovery process. In this tutorial we will give a hands-on tour of the computational approaches that are being developed in our group using DNNs for antibody variable domains for SARs Cov2(COVID 19) and other viruses. This tutorial would therefore be of interest not only to individuals that are interested in the employment of DNNs for biological design tasks, but also individuals that are interested in the employment of DNNs for natural language processing (NLP) tasks and other applications. The tutorial itself is to be a combination of pre-recorded presentations, live Q&A, and practical exercises with the TensorFlow 2 library in Jupyter notebook.

Instructors

Techniques for Modelling Contact Networks in a Pandemic

One of the critical problems in dealing with the current pandemic is to model the network of contacts along which the pandemic disease spreads. The actual network is not available both because of the difficulties in documenting contacts and the conflict between documenting contacts and securing individual privacy. In this tutorial we will explore a collection of techniques for fnding plausible contact networks for an epidemic based on the daily case numbers. The problem of fitting networks to data has utility well beyond the problem of fitting plausible epidemic contact networks. Robust networks of servers, gene expression and control networks, food webs, and other networks are pervasive in a number of scientific disciplines. The techniques covered in this tutorial can be used, in general, for network evolution.

Instructors
Michael Dubé, University of Guelph, Canada
Amanda Saunders, University of Guelph, Canada

Matthew Stoodley, University of Guelph, Canada

.

Registration

Registration is via EventBrite

Fees*

Category Early bird registration (AUD)
10 August 2021
Late and at-conference registration (AUD)
IEEE member $200 $275
IEEE student member $100 $150
Non-member $250 $325
Student non-member $150 $200
IEEE life member $50 $125

Each full registration covers a maximum of two papers. The third paper requires another full registration.
* Terms and conditions (including cancellation policy, etc)

This conference will bring together top researchers, practitioners, academics and students from around the globe to discuss the latest advances in the field of computational intelligence and its informatics, bioengineering and related fields. Computational intelligence approaches include artificial neural networks, fuzzy logic, evolutionary algorithms, hybrid algorithms and other emerging techniques.

Topics of interest include but are not limited to:

  • Gene expression array analysis
  • Neuromorphic integration of bio- and neuroinformatics
  • Structure prediction and folding
  • Molecular sequence alignment and analysis
  • Metabolic pathway analysis
  • RNA and protein folding and structure prediction
  • Analysis and visualisation of large biological data sets
  • Motif detection
  • Molecular evolution and phylogenetics
  • Systems and synthetic biology
  • Health: physical and mental
  • Modeling, simulation, and optimisation of biological systems
  • Robustness and evolvability of biological networks
  • Emergent properties in complex biological systems
  • Ecoinformatics and applications to ecological data analysis
  • Medical imaging and pattern recognition
  • Medical image analysis
  • Biomedical data modeling and mining
  • Treatment optimisation
  • Biomedical model parameterisation
  • Brain computer interface

Special Sessions

The submission deadline for all Special Sessions is the same as the general conference (30th May 2021). When submitting please select in EasyChair the corresponding special session track.

Special Session 1

Computational Intelligence for Epidemiology

The study of epidemics is of crucial importance at the current time as we examine not only the current ongoing actions, but how to better supply information and tools to policy leaders. We welcome not only those papers looking at COVID, but also other diseases for the next possible outbreak. High-quality papers studying the use of computational intelligence, or other forms of artificial intelligence, for any aspect relating to this area are solicited. Topics of interest include, but are not limited to, the application of computational intelligence to the following:

  • Epidemic modelling
  • Epidemic models dealing with incomplete or inconsistent information
  • Treatment strategies
  • Immunology
  • Public health decision support
  • Molecular modeling for vaccines and treatment development
  • Community detection in networks
  • Pandemic management modeling for transportation and supply networks
  • Techniques for network analysis
  • Techniques for network synthesis from data
  • Intelligent management and support for contact tracing
  • Policy communications methods
Chair

Special Session 2

Machine Learning Approach for Traditional Medicine Development

Traditional medicine can be considered as a multi-component drug. In the context of traditional medicine, a system biology approach could provide information on how multi-component ingredients work together on their targets. This mechanism is also popularly called network pharmacology. The interaction between components and protein target can be analysed to predict the potential compound candidate for certain diseases using a machine learning approach. Topics of interest include but not limited to the following:

  • Network pharmacology for traditional medicine
  • Omics technology for traditional medicine
  • Biomarker identification based on machine learning approach
  • Virtual screening using machine learning approach or computational algorithm
  • Molecular docking and molecular simulation
  • Feature selection and dimensional reduction for solving the issue of high dimensionality in drug-target interaction
  • Solving an imbalanced problem in drug-target interaction
  • Personalised herbal medicine
  • Herbal mixtures in traditional medicine
  • Application of metabolomics in quality control of natural product
Chair

Special Session 3

Optimizing Development and Delivery of Personalized Medicine via Computational Intelligence

Notwithstanding the power of Advanced Therapy Medicinal Products (ATMPs) to treat progressive illnesses and rare genetic conditions, their delivery on large scale is still problematic. The fragility of ATMPs combined with the impossibility for replacements due to the nature of the treatment and the advanced stages of the patient’s condition are some of the bottlenecks added to a generally critical supply chain. ATMPs are at the intersection of multiple healthcare logistic networks and, due to their novelty, research around their commercialisation is still in its infancy from an operations research perspective. This special session will present various aspects of the design and application of computational intelligence techniques to the development and delivery of personalised medicine.

Chair

Special Session 4

Machine Learning Based Methods for Genome and Proteome Annotation

Due to the availability of non-expensive high throughput sequencing technologies a large number of genomic sequences has been accumulated in the databases. Annotation pipelines that are based on machine learning algorithms can be an inexpensive solution to the traditional experimental methods of gene/protein annotations. In this session we propose to organize a session that will deal with the use of machine learning based annotation pipelines for a fast and inexpensive way of genome/proteome annotation. We are anticipating that the proposed session would be of immense interest for people who are interested in genome/proteome annotation and innovative usage of machine learning methods in biological research.

Chair

Instructions for authors

All papers must be original and not simultaneously submitted to another journal or conference. All regular paper submissions will be peer reviewed and accepted papers will be published in the conference proceedings and will be indexed in IEEE Xplorer. Selected regular papers, after a substantial extension, will be considered for publication in special issue of Elsevier’s Biosystems journal.

Short papers and posters will be included in a separate companion non-IEEE online website.

Submission is via EasyChair online submission system

Regular papers

Prospective authors are invited to submit papers of no more than eight (8) pages in IEEE conference format, including results, figures and references. Papers must be in PDF and written in English. Detailed instructions and templates for preparing your manuscripts can be found on the IEEE website. At maximum, two additional pages are permitted with over-length page charge of A$ 20/page, to be paid during author registration. Each paper will be peer-reviewed. Submission implies the willingness of at least one of the authors to register and present the paper at the conference.

If your papers have been accepted, please download the instructions for submitting your final paper after acceptance.

Short papers (will be included in a separate companion non-IEEE online website)

Short papers may present preliminary findings from work in progress, industry perspectives on issues relevant to CIBCB 2021. Short papers should present and discuss a clear and focused central idea, incorporate discussion of relevant research or context, and provide references, as necessary. Short papers must adhere to the IEEE conference template and have a length of no more than two (2) pages. Papers must be in PDF and written in English. Short papers will be desk reviewed by the CIBCB 2021 organisational committee. Submission implies the willingness of at least one of the authors to register and present the paper at the conference.

Download the sample short paper.

Poster presentation (will be included in a separate companion non-IEEE online website)

Posters may present preliminary findings from work in progress, or industry perspectives on issues relevant to CIBCB 2021. They should include title, authors, abstract, text, figures, and references, as necessary. Posters should be in portrait format with a maximum size given by the A0 standard (841 x 1189 mm; or 33.1 x 46.8 in), and no larger than 10 MB. Posters must be in PDF and written in English. Posters will undergo desk review by the CIBCB 2021 organisational committee. Submission implies the willingness of at least one of the authors to register and present the poster at the conference.

Registration terms and conditions

Payment policy

  • You will be making the payment via the 'Eventbrite'; link will be available soon on the conference website.
  • For authors, payment is due within 20 days of your receiving notification of the acceptance of your paper.
  • To avail of the 'early bird registration fees', you must register before the due date displayed on the conference website.
  • IEEE member rates: IEEE members can register at reduced rates. IEEE members are those holding current membership in the IEEE. Non-IEEE members are those without current membership in this organization.
  • Student rates: Proof of current student status must be provided at time of registration.
  • Each accepted paper must be accompanied by a full (non-student) registration to be included in the proceedings. Each full registration covers a maximum of two papers (or one paper and one late-breaking abstract).

Confirmation and tax invoices

A confirmation email with a tax invoice will be emailed when you submit your payment for registration fees.

Currency and GST

All prices are quoted in Australian Dollars (AUD$) and include GST.

Insurance

The registration fees do not include insurance of any kind regarding cancellation or postponement of the conference.

Credit card payments

When using the online payment system credit cards are processed directly by the Eventbrite system using a secure gateway. CIBCB2021 does not store or transmit your credit card details.

Registration cancellation policy

Any individual registration cancellation requests are subject to the cancellation policy listed below and as agreed to when registering for the conference. With respect to COVID-19, we continue to monitor the advice provided by the Australian Government.

Registration cancellations will not be eligible for any refund. However, another person may attend the conference in your place.

All cancellations must be advised via email to CIBCB2021 finance chair, Helen Wade, h.wade@federation.edu.au

Conference cancellation or postponement

The members of the committee and Federation University Australia do not accept any liability for losses incurred in the event of the conference being cancelled or postponed due to an unforeseen event or any other event that renders performance of this conference inadvisable, illegal, impracticable or impossible.

An unforeseen event shall include, but shall not be limited to: an Act of God; infectious disease outbreak, industrial disruptions, service provider failures, governmental restrictions and/or regulations; war or apparent act of war; terrorism or apparent act of terrorism; disaster; civil disorder, disturbance, and/or riots; curtailment, suspension, and/or restriction on transportation; or any other emergency.

Generously supported by


Health Innovation and Transformation Centre

Find out more


IEEE Ethics Reporting