
Internet Commerce Security Lab

Technical Report

Identifying Cross-Version Function
Similarity Using Contextual Features

Internet Commerce Security Lab (ICSL)
Federation University Australia

PO Box 663
University Drive, Mount Helen

Ballarat, Victoria, Australia 3353

June 2020



2

Identifying Cross-Version Function
Similarity Using Contextual Features

Paul Black∗ Iqbal Gondal† Peter Vamplew§ Arun Lakhotia‡
∗p.black@federation.edu.au, †iqbal.gondal@federation.edu.au, §p.vamplew@federation.edu.au,

‡arun@louisiana.edu

Abstract—The identification of similar functions in malware
assists analysis by supporting the exclusion of functions that
have been previously analysed, allows the identification of new
variants, supports authorship attribution, and the analysis of
malware phylogeny. A function’s context is a set comprising
the function itself, and all the program functions that may
be executed when this function is called. Contextual features
consist of data that is extracted from the functions contained
in the function context. This paper presents a novel technique
called Cross Version Contextual Function Similarity (CVCFS)
to identify function pairs in two programs using features based
on both individual functions and function context. The CVCFS
technique uses Support Vector Machine (SVM) machine learning
of function similarity features to pre-filter function pairs and then
applies an edit distance technique using function semantics to
reduce false-positives. A case study is provided where individual
and contextual features are extracted from three versions of Zeus
malware. The SVM pre-filtering, followed by the use of an edit
distance technique to filter false-positives, gives a function pair
identification accuracy of 85 percent.

Index Terms—malware similarity, malware evolution, function
similarity, binary similarity, Zeus malware, machine learning

I. INTRODUCTION

The identification of similar functions in malware assists
analysis by supporting the exclusion of functions that have
been previously analysed, enables faster identification of new
variants, supports authorship attribution, and the analysis of
malware phylogeny [1]. Similar functions in a pair of malware
samples may be due to the samples being from the same
malware family, the samples being produced by the same
malware author, use of shared code, a common library, or a
well-known malware technique [2].

The organisations performing malware analysis face several
challenges. The first is the large number of packed malware
samples that must be processed daily. Unpacking of these
malware samples reveals the original malware program. A
comparison of the unpacked malware programs allows the
elimination of exact matches, thereby reducing the volume
of new malware samples by several orders of magnitude
[3], [4]. Clustering may be used to segregate the unique
malware samples into malware variants [5]. Previously anal-
ysed variants are removed from the clustered samples using
malware similarity, some of which use function comparison
[6]. Function similarity can be used to exclude functions
that are unchanged and allow analysis to focus on changed
functions.

Software evolution occurs in most malware families as
a result of malware development efforts. As new malware

versions are released, the machine code in the malware func-
tions diverges from that of previous versions. Modeling of
the generation and evolution of malware has been performed
[2]; however, matching compiled functions across multiple
malware versions remains a significant research challenge.

This paper presents Cross Version Contextual Function
Similarity (CVCFS), a 2-step method for the identification
of similar pairs of functions in two variants of a program.
In the first step, a Support Vector Machine (SVM) model
is used to pre-filter candidate pairs from a set of all pairs
of functions from the two variants. The innovation in this
step lies in the use of features that stay reasonably invariant
even under refactoring and program evolution. These features
termed – contextual features – capture the calling context of a
function. In the second step, false positives from the first step
are weeded out by using edit distance between over function
semantics.

A case study is performed where function similarity features
for training were extracted from Zeus version 2.0.8.7 and Zeus
2.0.8.9 malware samples. The compilation dates of these train-
ing samples differ by approximately one month, with minor
variations between the functions. The malware samples were
labelled with ground truth function matching labels that were
obtained by manual reverse engineering. An SVM model was
trained using the labelled features. Function pair prediction
was tested using Zeus version 2.0.8.9 and 2.1.0.1 malware
samples. The compilation dates of these malware samples
differ by approximately six months with significant variation in
some of the functions. A comparison of the SVM model results
demonstrates the higher performance of contextual features.
The SVM pre-filtering is followed by the use of an edit
distance technique to filter false-positives. This resulted in a
function pair identification accuracy of 85 percent, this was
verified against the baseline function similarity obtained by
manual reverse engineering.

This paper makes the following contribution:

• Introduces a new class of features called contextual fea-
tures that strengthen features from individual functions.
These are well suited for capturing similarity between
malware samples exhibiting evolutionary changes.

• Cross Version Contextual Function Similarity (CVCFS)
technique for finding similar functions in pairs of pro-
grams, malware, or benign.

The following additional contributions are provided:



3

• A curated dataset of pairs of matched functions in three
versions of Zeus malware for use in future research.

• A set of three labelled IDA databases of Zeus malware
versions 2.0.8.7, 2.0.8.9, and 2.1.0.1. 1.

• Creation of labelled Interactive Disassembler (IDA)
databases of Zeus versions 2.0.8.7, 2.0.8.9, 2.1.0.1 mal-
ware samples.

The structure of this paper is as follows: Section II presents
related work, Section III presents the research methodology,
Section IV presents the empirical evaluation of results, and
Section V presents the conclusion.

II. RELATED WORK

A. BinJuice Function Semantics

BinJuice computes abstract semantics for each basic block
of all functions in a compiled program, by a process of
disassembly, control flow graph (CFG) generation, symbolic
execution, algebraic simplification, and the computation of
function semantics [7]. The aim of generating abstract seman-
tics is to represent any two equivalent code sequences by the
same semantics [8], [9].

Disassembly and CFG extraction are performed by existing
tools. Basic block semantics are generated using symbolic
interpretation. Symbolic execution does not involve execution
on a physical processor; instead, the effects of the program
instructions can be represented as a set of simultaneous
equations. An algebraic simplifier provides simplification of
the symbolic expressions resulting from the symbolic execu-
tion. The simplified symbolic expressions are mapped into
a canonical form to ensure that sections of equivalent code
having equivalent symbolic expressions are sorted in the same
order. The juice operation addresses the problem of comparing
sections of equivalent code containing different register allo-
cations by renaming register names in the simplified symbolic
expressions to consistent logical variables [7].

VirusBattle is built on BinJuice and is used to identify rela-
tionships between malware samples in a large database [10].
VirusBattle unpacks the submitted malware sample and creates
four different representations of the unpacked code. These rep-
resentations are disassembled code, generalised code, seman-
tics and generalised semantics (juice). VirusBattle identifies
similar functions by comparing the hashes of the function’s
generalised semantics, this provides a significant performance
gain compared with non-approximate methods, e.g. theorem
solvers [9]. VirusBattle has been commercialised by Cythereal
Inc and is known as Cythereal MAGIC.

B. Machine Learning In Software Similarity

The proliferation of IoT devices using open source code and
a variety of CPU architectures has led to a research interest
in the identification of known defects in the same source code
compiled for several different CPU architectures. Examples
of this research are provided by Gemini [11] and SAFE [12].
Early approaches to function binary similarity made use of

1The datasets related to this research are available online at
http://federation.edu.au/icsl/evolvedsimilarity

graph isomorphism. These techniques were effective, but per-
formance becomes an issue with increasing graph size. Neural
networks have been used for cross-architecture bug-search
as these techniques exhibit better performance characteristics
than graph isomorphism.

Gemini performs cross-architecture, binary, software defect
search using Control Flow Graph (CFG) features. Gemini uses
a neural network to extract features from the CFG of the
compiled functions [11].

Cross-architecture function similarity is also addressed by
SAFE, which extracts the instruction sequence from compiled
functions and models them as a natural language [12]. The in-
teraction of the instruction sequence is captured using a Gated
Recurrent Unit Neural Network (GRU-RNN). An attention
mechanism is used to automatically focus on the instructions
with the best performance for the identification of similar
functions.

The techniques in the above research use neural networks
to locate software vulnerabilities in the same version of code
that has been compiled for different CPU architectures. These
techniques are optimised for cross-architecture vulnerability
identification within a program of the same software version.
The techniques provided in this paper provide identification
of similar functions in different versions of the same program
compiled for a single CPU architecture.

C. Dominator Tree Features

Features taken from the dominator tree of Application
Program Interface (API) calls in Android malware are used
for malware detection [13]. The nesting structure of the API
calls in the Android program is captured by the dominator tree
of API calls; this allows identification of malware modules.
The Term Frequency/Inverse Document Frequency (TF-IDF)
weighting method [14], [15] is used to assign weights to each
node in the dominator tree. The weighted nodes are used
to build a database of malware dominator tree signatures.
Classification is performed using RandomForest, RandomTree,
ADTree, AdaBoost, and NaiveBayes models [13]. This re-
search on the identification of Android malware is the first to
use an API call dominator tree for detecting Android malware.
In graph theory, the definition of dominator states that node d
of a flow graph dominates node n if every path from the entry
node to node n must go through node d [16].

In this Android research, features are extracted from the
dominant nodes of the dominator tree. The CVCFS function
similarity technique presented in this paper calculates the
context of each function in the program under consideration,
features are then extracted and summed across all of the
functions within the function context.

III. RESEARCH METHODOLOGY

This research provides the CVCFS technique that is used
to identify functions that were compiled from different ver-
sions of the same malware family. This technique uses an
SVM model to pre-filter function pairs, and then uses an
edit distance technique on the function semantics to filter



4

and significantly reduce false-positives from the preliminary
function pair identification.

Previous research using ad-hoc methods and hard-coded
heuristics were used to identify function similarity [17].
CVCFS builds on this research by replacing the heuristics and
ad-hoc methods with a Support Vector Machine (SVM) model.

SVM is a machine learning model for binary classification
[18]. The SVM algorithm divides an n-dimensional feature
space into two classes using a hyperplane. The CVCFS
program extracts features from functions in the disassembly
of two related programs; an SVM model is used to identify
similar function pairs in the two programs.

The Function Similarity Ground Truth (FSGT) dataset con-
tains data defining the pairing of the functions from the two
programs being compared. The FSGT dataset contains a name
that has been assigned to each function pair and the Relative
Virtual Addresses (RVAs) of each function in the pair. The
function names are used for researcher convenience and are
not used in the similarity algorithms.

A. Function Context

Given a program p containing a set of functions F, the
context c(f) of a specific function f is function f, plus the
set of all non-API functions f ’ that can be reached by walking
the call graph starting from function f.
• Control Flow Edge A control flow edge e represents

the transfer of control that occurs when function x calls
function y. A control flow edge e from function x to
function y is represented by e = (x,y).

• Call Graph A call graph is represented by the directed
graph G = (V,E), where V is the set of functions in a
program, and E is the set of control flow edge transitions.

• Walk A walk w in G is a finite set of control flow
edge transitions that occur as the result of a sequence
of function calls from the execution of function f.

w(f) = {e0, e1, ..., ei} (1)

• Path A path w in G is the set of vertices v traversed due
to a walk in a call graph G, this path represents the set
of functions f ’ called by the execution of function f.

w(f) = {v0, v1, ..., vi-1} (2)

• Function Context The context c(f) of function tf is the
set of all functions f ’ that can be reached by walking all
possible paths in G starting from the vertex representing
function f. Recursion and call graph loops require limiting
the walk to paths not previously walked.

c(f) = {f ′ : f ′ ε ∀ p(f)} (3)

B. Local Features

The CVCFS technique makes use of local features taken
only from function f, and contextual features taken from the
context c(f) of the function. The local features consist of the
following:
• Set of API calls,
• Set of constants,

• Stack size,
• Function callers count.
• Basic block count,

Set of API calls: The system programming interface for the
Windows operating system is provided by Windows Applica-
tion Programming Interface (API) [19]. This API provides a
dynamic function call interface for Windows system services.
Windows programs use the portable executable (PE) format.
In the case where a call to an API results in calls subsequent
API’s, only the first API call is recorded. Let AL(f,p) be the
set of API functions called by function f in program p,

AL(f,p) = {a0, a1, ... ,an}. (4)

Set of constants: The goal in extracting a set of constants
is to extract invariant numerical constants from the operands
of instructions in functions. Call and jump instructions were
excluded because they have operands that contain program and
stack addresses that are not invariant. Let CL(f,p) be the set
of constants that are not program or stack addresses contained
in function f of program p.

CL(f, p) = {c0, c1, ..., cm} (5)

Stack size: Let SL(f,p) be the stack size of function f in
program p.

SL(f, p) = {s0} (6)

Function callers count: Let FL be the count of calls made
to function f in program p.

FL(f, p) = {f 0} (7)

Basic block count: A basic block is defined as the maximal
sequence of consecutive instructions that begin execution at the
first instruction and when the block is executed, all instructions
in the basic block are executed sequentially without halting or
branching, except for the last instruction in the block [16]. Let
BL be the count of basic blocks in function f.

BL(f, p) = {b0} (8)

C. Local Feature Ratios

The CVCFS system calculates feature ratios using the carte-
sian product of all functions in program p1 and all functions in
program p2. It is noted that function similarity is commutative,
and the same function pairs will be identified by comparing
programs p1, p2 as would be identified by comparing program
p2, p1. Let F(p) be the set of all functions in program p.

F (p) = {f 0, f 1, ..., f l} (9)

The set of function pairs FP(p1,p2) of programs p1 and p2
is defined as follows:

FP (p1, p2) = F (p1)× F (p2) (10)



5

Each element of the cartesian product FP is a function pair
fp consisting of one function f1 from program p1 and one
function f2 from program p2.

fp = (f1, f2) (11)

Local API Ratio: Let ALE1 and ALE2 be the sets of API
calls extracted from each of the functions in function pair fp.
Let local API ratio ARL, be the ratio of the magnitude of the
intersection of ALE1 and ALE2 to the larger of the magnitude
of ALE1 and ALE2.

ARL = len(ALE1 ∩ ALE2)/max(len(ALE1), len(ALE2))
(12)

Local Constants Ratio: Let CLE1 and CLE2 be the sets
of constants extracted from each of the functions in function
pair fp. Thus CL1 = CLE(fp[0]) and CL2 = CLE(fp[1]). Let
local constants ratio LCR be the ratio of the magnitude of the
intersection of CLE1 and CLE2 to the larger of the magnitude
of CLE1 and CLE2 .

CRL = len(CLE1 ∩ CLE2)/max(len(CLE1), len(CLE2))
(13)

Local Stack Ratio: Let SLE1 and SLE2 be the stack sizes
extracted from each of the functions in function pair fp. Let
local stack ratio LSR be the ratio of the magnitude of the
absolute value of the difference between SLE1 and SLE2 to
the larger of the magnitude of SLE1 and SLE2 .

SRL = abs(SLE1 −SLE2)/max(len(SLE1), len(SLE2))
(14)

Callers Ratio: Let FCE1 and FCE2 be the function callers
counts extracted from each of the functions in function pair
fp. Let FCD be the absolute value difference between FCE1

and FCE2. Then FCD = abs(FCE1 - FCE2). Let callers ratio
CR, be the ratio of FCD to the larger of FCE1 and FCE2.

CR = FCD/max(FCE1, FCE2) (15)

Blocks Ratio: Let BLE1 and BCE2 be the basic block counts
extracted from each of the functions in function pair fp. Let
blocks ratio BR be the ratio of BLE1 and BLE2.

BR = min(BLE1, BLE2)/max(BLE1, BLE2) (16)

D. Contextual Features

The strength of function similarity features can be improved
by extracting the feature across all of the functions contained
within the context of the function under consideration. The
contextual features consist of the following:
• Contextual set of API calls,
• Contextual set of constants,
• Contextual stack size,
• Contextual return count,
• Contextual function calls count.
Contextual set of API calls: Let AC be the set of API calls

made from the context c(f) of function f.
Contextual set of constants: Let CC be the set of constants

from the context c(f) of function f.
Contextual stack size: Let SC be the sum of stack sizes

from the context c(f) of function f.

Contextual return count: Let RC be the count of return
instructions from the context c(f) of function f.

Contextual function calls count: Let CS be the count of
call instructions from the context c(f) of function f.

E. Contextual Feature Ratios

The contextual feature ratios consist of the following:
Contextual API Ratio: Let AC1 and AC2 be the set of

API calls made from the context of each of the functions in
function pair fp. Let the contextual API ratio ACR, be the ratio
of the magnitude of the intersection of AC1 and AC2 to the
larger of the magnitude of AC1 and AC2.

ACR = len(AC1 ∩ AC2)/max(len(AC1), len(AC2))
(17)

Contextual Constants Ratio: Let CC1 and CC2 be the
set of constants from the context of each of the functions in
function pair fp. Let the contextual constants ratio CCR be the
ratio of the magnitude of the intersection of CC1 and CC2 to
the larger of the magnitude of CC1 and CC2 .

CCR = len(CC1 ∩ CC2)/max(len(CC1), len(CC2))
(18)

Contextual Stack Ratio: Let SC1 and SC2 be the sum of
the stack sizes from the context of each of the functions in
function pair fp. Let the contextual stack ratio SCR be the
ratio of the magnitude of the intersection of SC1 and SC2 to
the larger of the magnitude of SC1 and SC2 .

SCR = len(SC1 ∩ SC2)/max(len(SC1), len(SC2)) (19)

Contextual Returns Ratio: Let RC1 and RC2 be the count
of return instructions from the context of each of the functions
in function pair fp. Let the contextual returns ratio RCR, be
the ratio of absolute value difference between RC1 and RC2

to the larger of RD1 and RD2.

RCR = abs(RC1−RC2)/max(len(RC1), len(RC2)) (20)

Contextual Calls Ratio: Let FC1 and FC2 be the count
of call instructions from the context of each of the functions
in function pair fp. Let the callers ratio FCR, be the ratio of
absolute value difference between FC1 and FC2 to the larger
of FC1 and FC2.

FCR = abs(FC1 − FC2)/max(FC1, FC2) (21)

F. Edit Distance Filtering

The function similarity results obtained by the SVM model
developed in an earlier section included a large number of
false-positive results. Experimentation with the SVM model
was performed but the false-positive results remained a prob-
lem. Existing research [20], [11] uses machine learning as
the first stage pre-filter in identifying similar functions. To
overcome the large number of false-positives, a decision was
taken to use the SVM model as a pre-filter and to add an edit
distance metric using the BinJuice generalised semantics to
filter out false-positives.

Although it would be possible to remove the pre-filtering
step and to solely use the graph edit distance for the identi-
fication of function pairs, this would not be feasible due to



6

Create empty function context
Create empty visited list
From the disassembly of function f

Add static function calls from f to function context
For each function in function context

If function not in visited list
Add function to visited list
Recursively get new static functions called by function
Add new static functions to function context

Add f to function context

Fig. 1. Function Context Extraction Algorithm

p1 = baseline version of program
p2 = updated version of program

for each function in p1
extract function context for function

for each function in p2
extract function context for function

for each function in p1
calculate individual features for function
calculate contextual features for function

for each function in p2
calculate individual features for function
calculate contextual features for function

for each f1 in p1
for each f2 in p2

calculate locate feature ratios
calculate contextual feature ratios
if f1, f2 in FSGT dataset
set label = "1"

else
set label = "0"

rva1 = rva(f1)
rva2 = rva(f2)
features = map(rva1, rva2, ARL, ARD, FRD,

RRD, CR, LCR, CRD, LSR, LSD, LBR)

Fig. 2. Feature Extraction Algorithm

the significant execution time of the edit distance calculation.
In the research in this paper, the SVM pre-filter ran in
approximately two minutes, while the run time for the edit
distance filtering could take as long as 12 hours.

BinJuice function semantics contain four levels of abstrac-
tion, where the most abstract form of the function semantics is
the Generalised Semantics. The Levenshtein edit distance [21]
of the Generalised Semantics of each function was calculated.
Edit distance increases with function size and cannot be used
directly to identify matching function pairs. The edit distance
was normalised by dividing the edit distance by the function
basic block count to give a Normalised Edit Distance per
Basic Block (NEDBB) metric The NEDBB metric was used to
identify matching function pairs from the pre-filtered matches.

G. CVCFS Algorithm

The algorithm used to extract the function context of a
specified function is shown in Figure 1. The algorithm for
feature extraction is shown in Figure 2. The algorithm used to
perform edit distance filtering of the pre-filtered function pairs
is shown in Figure 3. In the edit distance filtering algorithm,
the filter value is a hardcoded threshold that is tested
against the NEDBB value in order to select the pre-filtered
function pairs.

let ml_predicted = all fn pairs predicted match
for each fn_pair in ml_predicted
let sem1 = semantics of fn_pair[1]
let sem2 = semantics of fn_pair[2]
let ed = nktk.edit_distance(sem1, sem2)
let bc1 = blocks count fn_pair[1]
let ed_per_block = ed / bc1
if ed_per_block < filter value
match = True

else
match = False

Fig. 3. Edit Distance Filtering Algorithm

IV. EMPIRICAL EVALUATION

The malware samples used in this paper are shown in Table
I. The unpacked samples were provided by Cythereal and
were disassembled using the Interactive Disassembler (IDA).
The linker date in the Portable Executable (PE) header is
used to indicate the time the malware samples were created,
although the linker date can be modified by the malware
author, there are no inconsistencies that suggest this time has
been modified. The linker dates indicate that sample 2 was
produced approximately one month after sample 1, and sample
3 was produced approximately six months after sample 1.

The malware samples were submitted for Cythereal process-
ing. The output from the Cythereal processing is the unpacked
malware sample and a dataset containing the disassembly and
semantics of the unpacked malware sample [22].

Sample SHA1 Hash Version Date
8a7faa25f23a0e72a760075f08d22a91d2c85f57 2.0.8.7 2010-09-14
706bf4dcf01b8eceedf6d05cf5b55a27e4ff8ef0 2.0.8.9 2010-10-15
30c6bb2328299a252436d2a3190f06a6f04f7e3f 2.1.0.1 2011-03-24

TABLE I
ZEUS SAMPLE DETAILS

Tool Version Count Version Count Match Count
IDA 2.0.8.7 577 2.0.8.9 553 549
Cythereal 2.0.8.7 577 2.0.8.9 553 549
IDA 2.0.8.9 553 2.1.0.1 601 539
Cythereal 2.0.8.9 539 2.1.0.1 601 517

TABLE II
ZEUS FUNCTION COUNT AND MANUAL MATCH COUNT

The FSGT dataset identifies the function pairs, function
names and function RVAs for each malware sample used
in this research. Manual analysis using IDA, the unpacked
malware samples, and the leaked Zeus source code was
performed in order to identify the function pairs for the FSGT
dataset. Function identification was performed based on the
API calls, constants, and CFG structure. Function names from
the Zeus source code provide a convenient identification for
researchers, but are not used by the research code. Function
RVAs are used to identify functions in the Cythereal semantics
and in the research code. The results of the function name
labelling are shown in Table II. IDA identified 553 functions
in sample 3 while Cythereal MAGIC could only identify 539
functions in sample 3. This may be an artifact of the automatic
unpacker.



7

push(ebp)
mov(ebp,esp)
sub(esp,SL)

Fig. 4. Function Prologue

A. Features

To calculate the local and contextual constant features,
constants were extracted from mov, push, add, cmp, and sub

instructions. Ad-hoc analysis showed that these instructions
contained a significant proportion of invariant operands. Pro-
gram and stack addresses were further filtered by excluding
values greater than the program base address.

The stack size is taken from the function prologue when it
is present; otherwise, it is zero. The stack size SL is taken from
the sub instruction in the function prologue shown in Figure
4. It is noted that some compilers may not use the same idiom
for their function prologue.

As this research uses static analysis, the non-API function
call counts used in this research are a count of static function
calls.

B. SMOTE Oversampling

The function similarity training dataset was imbalanced due
to the use of the cartesian product comparison, which resulted
in an unstable performance of the SVM model. Assume that
the two versions of the same program are being compared
and each program contains 500 functions. The maximum
number of matching function pairs is 500. The number of
function pairs generated by the cartesian product is 250,000,
and the minimum number of non-matching function pairs is
249,500. The use of a cartesian product in the generation of
training features inherently leads to an imbalanced dataset.
The performance of the SVM model was improved with the
use of Synthetic Minority Oversampling Technique (SMOTE)
[23] to rebalance the training dataset.

C. SVM Model Training

In this paper, sample 1 and sample 2 were used for training
as these two Zeus samples are similar but exhibit a number
of minor differences. Function similarity features for training
were calculated using the cartesian product of all functions in
samples 1 and 2. These features were labelled as matching
or not matching using the FSGT dataset. All possible feature
combinations were used to train a series of SVM models in
order to identify the best performing feature combinations.
As 10 features were used, exhaustive testing required 1023
tests to be performed. The features in each of these tests
were assigned a binary identifier, e.g., the first feature is
identified as 0000000001, the second feature was identified
as 0000000010. The use of binary identifiers allowed the
numbering of individual tests; these feature identifiers are
shown in Table III.

D. Pre-Filtering

The functions in samples 1 and 3 exhibit more differences
due to software development than the training dataset. A

testing set of function similarity features were created using
the cartesian product of all functions in samples 1 and 3. The
previously generated SVM models were used to predict the
matching function pairs from testing feature set. The results
of this prediction were evaluated using the FSGT dataset.

Feat # Vector Description
1 0000000001 Basic Block Ratio
2 0000000010 Contextual Stack Ratio
4 0000000100 Local Stack Ratio
8 0000001000 Contextual Constants Ratio
16 0000010000 Local Constants Ratio
32 0000100000 Contextual Callers Ratio
64 0001000000 Contextual Returns Ratio
128 0010000000 Calls Ratio
256 0100000000 Local API Ratio
512 1000000000 Contextual API Ratio

TABLE III
NUMBERING FOR FEATURE COMBINATION TESTS

The performance of each individual feature was assessed
by performing function similarity classification using SVM
models trained for each individual feature. The results of this
evaluation are shown in Table IV. Although the prediction
of the SVM model was reasonable, the recall performance
was not good resulting in a significant false-positive count.
A number of features were tested in an effort to reduce the
false-positive count, ultimately it was decided to use the SVM
model as a pre-filter of function pairs.

The feature combinations which provided the best perfor-
mance are shown in Table V. The function pair prediction
results in this research vary from run to run due to the
stochastic nature of machine learning.

The F-measure (F1) [24] defined in equation 22 is used to
assess the precision and recall of results. From the F-measure,
the best performing feature combination is test 611, that makes
use of the Contextual API ratio, the Contextual Returns Ratio,
the Contextual Callers Ratio, the Contextual Stack Ratio and
the Basic Blocks Ratio, as shown in Table V.

F1 = 2 * (Precision * Recall) / (Precision + Recall) (22)

Test Vector TP FP FN Pr Rc F1
1 00000000001 500 64486 17 0.01 0.97 0.02
2 00000000010 280 19528 237 0.01 0.54 0.03
4 00000000100 265 20460 252 0.01 0.51 0.02
8 00000001000 479 10338 38 0.04 0.93 0.08
16 0000010000 460 18767 57 0.02 0.89 0.05
32 0000100000 378 69778 139 0.01 0.73 0.01
64 0001000000 490 36333 27 0.01 0.95 0.03
128 0010000000 444 65050 73 0.01 0.86 0.01
256 0100000000 279 746 238 0.27 0.54 0.36
512 1000000000 408 6565 109 0.06 0.79 0.11

TABLE IV
INDIVIDUAL FEATURE PERFORMANCE

E. Feature Performance

The relative performance of individual features can be
assessed from Table IV or it can be assessed from a count of



8

Test Vector TP FP FN Pr Rc F1
39 0000100111 510 66327 7 0.01 0.99 0.02
423 0110100111 509 50222 13 0.01 0.98 0.02
475 0111011011 511 25759 6 0.02 0.99 0.04
513 1000000001 510 21120 7 0.02 0.99 0.05
577 1001000001 509 41955 8 0.01 0.98 0.02
579 1001000011 509 21816 8 0.02 0.98 0.04
611 1001100011 509 12661 8 0.04 0.98 0.07
614 1001100110 509 42280 8 0.01 0.98 0.02
643 1010000011 511 42743 6 0.01 0.99 0.02
711 1011000111 509 26980 8 0.02 0.99 0.04
742 1011100110 511 54320 6 0.01 0.99 0.02
769 1100000001 512 69733 5 0.01 0.99 0.01
771 1100000011 511 34024 6 0.01 0.99 0.03
775 1100000111 512 63062 5 0.01 0.99 0.02
838 1101000110 509 32581 8 0.02 0.98 0.03
865 1101100001 511 31977 6 0.02 0.99 0.03
962 1111000010 509 45490 8 0.01 0.98 0.02

TABLE V
HIGHEST PERFORMING FEATURE COMBINATIONS

those features present in the best performing feature combina-
tions shown in Table V. Table VI summarises the performance
of each of the features, the ”Ind Rank” column ranks individual
feature performance based on the F-Score with higher numbers
indicating better performance. From this ranking, the Local
API Ratio outranked the Contextual API Ratio, the Contextual
Constants Ratio outranked the Local Constants Ratio, and the
Contextual Stack Ratio outranked the Local Stack Ratio.

Feature performance was also assessed by observing the
number of times the feature was present in the test runs of the
Highest Performing Feature combinations in Table V. This is
shown in Table VI as ”TFP Count” (Top Performing Feature
Count), this value is used to create a rank as shown in the
”TPF Rank” column. In this ranking, the Contextual API Ratio
outranks the Local API Ratio, and the Contextual Stack Ratio
outranks the Local Stack Ratio, the Contextual Returns Ratio
performed well with a ranking of 5. The features based on
constants did not rank highly. The Basic Blocks Ratio ranked
equally with the Contextual Stack Ratio.

Feature Ind Rank TPF Count TPF Rank
Basic Blocks Ratio 2 13 6
Contextual Stack Ratio 3 13 6
Local Stack Ratio 2 7 3
Contextual Constants Ratio 5 1 1
Local Constants Ratio 4 1 1
Contextual Callers Ratio 1 6 2
Contextual Returns Ratio 3 10 5
Calls Ratio 1 6 2
Local API Ratio 7 8 4
Contextual API Ratio 6 14 7

TABLE VI
RANKING OF FEATURE PERFORMANCE

F. Edit Distance Filtering

An edit distance metric was used to filter the pre-filtered
function pair predictions to reduce the false-positive count
from the SVM pre-filtering.

The results in Table VII show the performance variation due
to the use of different values of the Edit Metric Filter (EMF).

This shows that the best performance is obtained using an EMF

value of 7.

Test EDF OP TP FP FN Pr Rc F1
611 ”ML” 508 22248 9 0.02 0.98 0.04
611 5 ”EM” 423 172 94 0.71 0.82 0.76
611 6 ”EM” 438 178 79 0.71 0.85 0.77
611 7 ”EM” 441 184 76 0.71 0.85 0.77
611 8 ”EM” 444 214 73 0.67 0.86 0.76
611 9 ”EM” 452 243 65 0.65 0.87 0.75
611 10 ”EM” 458 279 59 0.62 0.89 0.73
611 11 ”EM” 464 325 53 0.59 0.90 0.71
611 12 ”EM” 469 395 48 0.54 0.91 0.68

TABLE VII
EDIT METRIC FILTER PERFORMANCE

In the results shown in Table VIII, an edit distance filter
value of 7 was used to reject false-positive predictions. The
”ML” identifier in the operation (”OP”) column denotes the
results from the SVM pre-filtering stage, the ”EM” identifier
indicates the final results obtained using the edit distance filter-
ing. Referring to Table VIII, the highest F-measure (F1) value
occurs with Test 614 with a value of 0.77, and 441 function
pairs correctly identified. This corresponds to a function pair
identification accuracy of 85 percent.

Test Op TP FP FN Pr Rc F1
39 ML 505 41721 12 0.01 0.98 0.02
39 EM 443 231 74 0.66 0.86 0.74
423 ML 487 42284 30 0.01 0.94 0.02
423 EM 422 164 95 0.72 0.82 0.77
475 ML 496 7353 21 0.06 0.96 0.12
475 EM 429 167 88 0.72 0.83 0.77
513 ML 510 46724 7 0.01 0.99 0.02
513 EM 442 233 75 0.65 0.85 0.74
577 ML 504 14513 13 0.03 0.97 0.06
577 EM 440 183 77 0.71 0.85 0.77
579 ML 509 11928 8 0.04 0.98 0.08
579 EM 441 182 76 0.71 0.85 0.77
611 ML 509 24339 8 0.02 0.98 0.04
611 EM 441 185 76 0.70 0.85 0.77
614 ML 508 33414 9 0.01 0.98 0.03
614 EM 441 175 76 0.72 0.85 0.78
643 ML 423 6536 94 0.06 0.82 0.11
643 EM 360 146 157 0.71 0.70 0.70
711 ML 497 18675 20 0.03 0.96 0.05
711 EM 430 200 87 0.68 0.87 0.76
742 ML 475 15504 42 0.03 0.92 0.06
742 EM 413 154 104 0.73 0.80 0.76
769 ML 412 7199 105 0.05 0.80 0.10
769 EM 345 157 172 0.69 0.67 0.68
771 ML 428 11205 89 0.04 0.83 0.07
771 EM 360 156 157 0.70 0.70 0.70
775 ML 508 29646 9 0.02 0.98 0.03
775 EM 442 229 75 0.66 0.85 0.74
838 ML 507 34360 10 0.01 0.98 0.04
838 EM 440 192 77 0.70 0.85 0.77
865 ML 511 27297 6 0.02 0.99 0.04
865 EM 441 186 76 0.70 0.85 0.77
962 ML 456 16292 61 0.03 0.88 0.05
962 EM 413 173 104 0.70 0.80 0.75

TABLE VIII
RESULTS FOLLOWING EDIT METRIC FILTERING

G. Future Work

Work presented in this paper can be extended as follows:



9

• Extend the concept of function context and its use in
program analysis,

• Investigate the performance variation in existing function
similarity programs over increasing evolutionary distance,

• Generalize the techniques used in this paper for identify-
ing function similarity,

• Automatically create the FSGT dataset,
• Research function similarity in programs that have been

subject to significant software development.

V. CONCLUSION

The research in this paper introduces the concept of con-
textual features and provides methods for their calculation. A
combination of individual and contextual features are used in
the CVCFS technique for the identification of similar functions
in two related programs. This paper demonstrates that contex-
tual features provide improved performance compared to the
corresponding features extracted from individual functions.

The technique for the generation of contextual features
involves summing features extracted from the context of each
function. This technique of strengthening features by summing
over the function context is generally applicable to a wide
range of machine learning function similarity research.

The CVCFS function similarity technique is presented using
a case study; however, this technique is generally applicable
to identifying similar functions in both malware and benign
programs. A comparison of the effectiveness of the local
features and the contextual features was performed using a
ranking based on feature performance and of the frequency
of features in the highest performing feature combinations.
This ranking shows that contextual features outperform local
features in four out of six cases.

An edit distance technique was used to filter the false-
positives from the machine learning results and a maximum
accuracy of 85 percent identification of true function pairs was
achieved with an F-measure value of 0.77.

ACKNOWLEDGEMENT

The authors would like to thank Cythereal2 for providing
access to Cythereal MAGIC [22] and to the malware dataset
used in this research. This research was funded in part through
the Internet Commerce Security Laboratory (ICSL), a joint
venture between Westpac, IBM and Federation University
Australia. Paul Black is supported by an Australian Govern-
ment Research Training Program (RTP) Fee-Offset Scholar-
ship through Federation University Australia.

REFERENCES

[1] S. Alrabaee, M. Debbabi, and L. Wang, “On the feasibility of binary
authorship characterization,” Digital Investigation, vol. 28, pp. S3–S11,
2019.

[2] A. Walenstein and A. Lakhotia, “A transformation-based model of
malware derivation,” in 2012 7th International Conference on Malicious
and Unwanted Software. IEEE, 2012, pp. 17–25.

2Cythereal has licensed VirusBattle from the University of Louisiana at
Lafayette

[3] F. C. C. Osorio, H. Qiu, and A. Arrott, “Segmented sandboxing-a novel
approach to malware polymorphism detection,” in 2015 10th Interna-
tional Conference on Malicious and Unwanted Software (MALWARE).
IEEE, 2015, pp. 59–68.

[4] I. U. Haq, S. Chica, J. Caballero, and S. Jha, “Malware lineage in the
wild,” arXiv preprint arXiv:1710.05202, 2017.

[5] U. Bayer, P. M. Comparetti, C. Hlauschek, C. Kruegel, and E. Kirda,
“Scalable, behavior-based malware clustering.” in NDSS, vol. 9. Cite-
seer, 2009, pp. 8–11.

[6] T. Kim, Y. R. Lee, B. Kang, and E. G. Im, “Binary executable
file similarity calculation using function matching,” The Journal of
Supercomputing, vol. 75, no. 2, pp. 607–622, 2019.

[7] A. Lakhotia, M. D. Preda, and R. Giacobazzi, “Fast location of similar
code fragments using semantic ’juice’,” in Proceedings of the 2nd
ACM SIGPLAN Program Protection and Reverse Engineering Workshop.
ACM, 2013, p. 5.

[8] B. H. Ng and A. Prakash, “Expose: Discovering potential binary code re-
use,” in Computer Software and Applications Conference (COMPSAC),
2013 IEEE 37th Annual. IEEE, 2013, pp. 492–501.

[9] A. Lakhotia and P. Black, “Mining malware secrets,” in Malicious and
Unwanted Software (MALWARE), 2017 12th International Conference
on. IEEE, 2017, pp. 11–18.

[10] C. Miles, A. Lakhotia, C. LeDoux, A. Newsom, and V. Notani, “Virus-
battle: State-of-the-art malware analysis for better cyber threat intelli-
gence,” in Resilient Control Systems (ISRCS), 2014 7th International
Symposium on. IEEE, 2014, pp. 1–6.

[11] X. Xu, C. Liu, Q. Feng, H. Yin, L. Song, and D. Song, “Neural network-
based graph embedding for cross-platform binary code similarity detec-
tion,” in Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security. ACM, 2017, pp. 363–376.

[12] L. Massarelli, G. A. Di Luna, F. Petroni, R. Baldoni, and L. Querzoni,
“Safe: Self-attentive function embeddings for binary similarity,” in
International Conference on Detection of Intrusions and Malware, and
Vulnerability Assessment. Springer, 2019, pp. 309–329.

[13] S. Alam, S. Yildirim, M. Hassan, and I. Sogukpinar, “Mining domi-
nance tree of api calls for detecting android malware,” in 2018 2nd
International Symposium on Multidisciplinary Studies and Innovative
Technologies (ISMSIT). IEEE, 2018, pp. 1–4.

[14] G. Salton and C. Buckley, “Term weighting approaches in automatic
text retrieval,” Cornell University, Tech. Rep., 1987.

[15] Z. Yun-tao, G. Ling, and W. Yong-cheng, “An improved tf-idf approach
for text classification,” Journal of Zhejiang University-Science A, vol. 6,
no. 1, pp. 49–55, 2005.

[16] M. Lam, R. Sethi, J. Ullman, and A. Aho, Compilers: Principles,
techniques, and tools. Pearson Education, 2006.

[17] P. Black, I. Gondal, P. Vamplew, and A. Lakhotia, “Evolved similarity
techniques in malware analysis,” in 2019 18th IEEE International
Conference On Trust, Security And Privacy In Computing And Com-
munications/13th IEEE International Conference On Big Data Science
And Engineering (TrustCom/BigDataSE). IEEE, 2019, pp. 404–410.

[18] C. Cortes and V. Vapnik, “Support-vector networks,” Machine learning,
vol. 20, no. 3, pp. 273–297, 1995.

[19] M. E. Russinovich, D. A. Solomon, and A. Ionescu, Windows internals.
Pearson Education, 2012.

[20] S. Eschweiler, K. Yakdan, and E. Gerhards-Padilla, “discovre: Efficient
cross-architecture identification of bugs in binary code.” in NDSS, 2016.

[21] V. I. Levenshtein, “Binary codes capable of correcting deletions, inser-
tions, and reversals,” in Soviet physics doklady, vol. 10, no. 8, 1966, pp.
707–710.

[22] Cythereal Inc, “Cythereal magic,” 2018. [Online]. Available: https:
//www.cythereal.com

[23] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “Smote:
synthetic minority over-sampling technique,” Journal of artificial intel-
ligence research, vol. 16, pp. 321–357, 2002.

[24] C. J. Van Rijsbergen, Information retrieval. Citeseer, 1979.


