Topics covered in these slides

- Using real world datasets
- A simple way to make an Ogive, Ogives are good at displaying percentiles visually

Explaining p-values by getting many samples and making an Ogive of p-values

Section 1 Finding relationships in datasets with more than one column (more than one variable)

You can download this dataset from a government website, ALL properties first rented in NSW in 2018

	Α	В	D	E
	Post	Dwelling	Weekly	
1	code	Туре	Rent	In Sydney?
2	2007	F	\$850	Sydney
3	2021	F	\$760	Sydney
4	2106	F	\$595	Not Sydney
5	OMG	260,000 rd	OWS	dney
6	2145	F	\$510	Sydney
262220	2850	Н	\$395	Not Sydney

summary of all dwellings	▼ F	Н	total
Not Sydney			
Average of Weekly Rent	\$34	5.73 \$419.90	\$394.86
Count of Dwelling Type	30	,039 58,944	88,983
Count of Dwelling Type%	33.	76% 66.24%	100.00%
Sydney			[
Average of Weekly Rent	\$57	8.69 \$646.62	\$600.03
Count of Dwelling Type	118	,812 54,424	173,236
Count of Dwelling Type%	68.	58% 31.42%	100.00%
Total Average of Weekly Rent	\$53	1.68 \$528.74	\$530.41
Total Count of Dwelling Type	148	,851 113,368	262,219
Total Count of Dwelling Type%	56.	77% 43.23%	100.00%

You can easily make ogives in excel, just highlight a list of sorted numbers and insert a bar chart

Ogive of the list of exam marks 70,30,20,20

Ogive of Weekly Rent X for 3000 properties in the Sydney CBD

\$1,000 \$3,000 \$5,000 \$7,000 weekly rent X

By definition the *p*-value or probability value is the probability of obtaining test results at least as extreme as the results actually observed during the test, assuming that H_0 is correct

A good way of checking you understand this is proving that if H_0 is true and you get many samples and find the p-value for each sample then close to How many 25% of p-values will be less than 0.25 lecturers 5% of p-values will be less than 0.05 K% of p-values will be than K/100 understand etc this ??

If there is only a weak relationship the ogive of p-values will be a straight line.

To get the Ogive you need to find many samples and find the p-value for each sample

- If you have a sample you can measure evidence for claims about the population using a p-value
- Students do not need to learn the formulas they can use online calculators they just have to enter the sample statistics or the lecturer can make excel spreadsheets that automatically calculate them
- It is easy to use excel to get many samples and find the p-value for each sample

It is easy to split a population into many samples using excel, look at the following example

	Α	В	C	D	E	F
1	Dwelling Type	Sample		Dwelling Type	Sample	rand()
2	Flat	sample	1	Flat	sample 1	0.15685
3	Flat	sample	1	Flat	sample 2	0.26605
4	Flat	sample	2	Flat	sample 2	0.39724
5	Flat	sample	2	Flat	sample 4	0.40355
6	Flat	sample	3	Flat	sample 3	0.83585
7	Flat	sample	3	Flat	sample 3	0.91367
8	House	sample	4	House	sample 4	0.9664
9	House	sample	4	House	sample 1	0.98886

If you understand this dataset you only expect the columns A and B to be related

	А	В	С	D
1	Dwelling type?	In Sydney?	which half?	which sample ?
2	F	Sydney	1st	sample 1193
3	F	Sydney	1st	sample 1309
127626	F	Sydney	1st	sample 949
127627	F	Sydney	2nd	sample 576
127628	F	Sydney	2nd	sample 754
262220	Н	Not Sydney	2nd	sample 1335

You should think column C is not related to anything

	А	В	С	In row 2 to
1	Dwelling type?	In Sydney?	which half?	row 127626
2	F	Sydney	1st	the bond
3	F	Sydney	1st	was lodged
127626	F	Sydney	1st	in the 1 st
127627	F	Sydney	2nd	
127628	F	Sydney	2nd	
262220	Η	Not Sydney	2nd	

There is clearly a relationship between dwelling type and location .

summary	<mark>_</mark> F I	H	Grand Total
Not Sydney			
Count	30,039	58,944	88,983
%	33.76%	66.24%	100.00%
Sydney			
Count	118,812	54,424	173,236
%	68.58%	31.42%	100.00%
Total Count	148,851	113,368	262,219
Total %	56.77%	43.23%	100.00%

You can get a single sample and find pvalue

summary	F		н	Grand Total	Entering the
Not Sydney					numbers
Count		10	21	31	into an
%	32	2.26%	67.74%	100.00%	online
Sydney					calculator
Count		47	22	69	you get the
%	68	3.12%	31.88%	100.00%	0.0008
Total Count		57	43	100	
Total %	57	7.00%	43.00%	100.00%	

An ogive of pvalue when there is a strong relationship

0 0.2 0.4 0.6 0.8 Note that Different samples give different answers Looking at this summary there is not much of a difference between %s so there is a weak relationship

summary	🖵 1st	2nd	Total
Not Sydney			
Count	44679	44304	88983
%	50.21%	49.79%	100.00%
Sydney			
Count	82946	90290	173236
%	47.88%	52.12%	100.00%
Total Count	127625	134594	262219
Total %	48.67%	51.33%	100.00%

You can get a single sample and find the p-value

Column Labels 📮					Entering the
summary	🖵 1st		2nd	Total	numbers
Not Sydney					into an
Count		17	14	31	online
%		54.84%	45.16%	100.00%	calculator
Sydney					you get the
Count		33	36	69	p-value
%		47.83%	52.17%	100.00%	0.5166
Total Count		50	50	100	
Total %		50.00%	50.00%	100.00%	

Ogive of many pvalues when relationship is weak

Example of a population with a strong relationship

summary	Average of Rent	StdDev	count
NSF	\$345.73	\$164.17	30,039
NSH	\$419.90	\$192.76	58,944
SF	\$578.69	\$238.17	118,812
SH	\$646.62	\$358.03	54,424
Note: NS	F=NonSydney Flat ,	SH= Sydr	iey Hous

You can get a single sample and find p-value

Summary	• Average Rent	Stdev	count	Entering the
NSF	\$366.36	\$109.46	11	into an
NSH	\$470.48	\$235.25	21	online
SF	\$605.31	\$316.84	49	calculator
SH	\$684.74	\$246.70	19	you get the
Total (ALL)	\$565.80	\$286.29	100	0.006

Example of a weak relationship, note that the averages are very close, <u>Close to \$530</u>

summary	1stF	1stH	2ndF	2ndH
Average of Weekly Rent	\$534.00	\$526.97	\$529.52	\$530.46
StdDev of Weekly Rent	\$249.25	\$302.40	\$238.68	\$309.61
Count of Weekly Rent	71,728	55,897	77,123	57,471

Note that 1st F is a Flat where the bond was lodged in the 1st half of the year 2nd H is a House and the bond was lodged in the 2nd half of the year

You can get a single sample and find a p-value

	<mark>Ave</mark>	rage			Entering the numbers
summary	<mark>rent</mark>		stdev	Count	into an
1stF	Ç	631.71	\$363.19	35	online
1stH	Ç	<mark>543.25</mark>	\$233.32	20	vou get the
2ndF	Ç	<mark>6463.20</mark>	\$151.68	25	p-value
2ndH	Ç	601.25	\$289.49	20	0.138
Total(All)	Ç	565.80	\$286.29	100	

The ogive of p-value when there is a weak relationship in the population, It was easy to split the population into 2600 samples and get the ANOVA p-value for each sample

Section 2

Working with a single variable (A dataset with a single column)

The normal way of introducing p-values using a single variable can be made even easier by

Not talking about H0 and H1

Not talking about probability, including the normal distribution

Students do not need to learn p-value formulas they can use a webpage https://measuringu.com/onep/

🚇 Measuring 🛛

Exact Binomial p-value = 0.0248.

The probability the observed proportion 0.3 comes from a population less than 0.4 is **98.02%** .

Repeating slide 7: By definition the *p*-value or probability value is the probability of obtaining test results at least as extreme as the results actually observed during the test, assuming that the H_0 is correct

So if H₀ is true and you get many samples and find the p-value for each sample 25% of p-values are less than 0.25 5% of p-values are less than 0.05 K% of p-values are less than K/100 this ?? The next 5 slides will explain p-value by making an Ogive of p-values after investigating the accuracy of sampling by using a computer to find many samples.

- Suppose you are a politician and there is an election today and your "leader" wins by getting 52% of the vote.
- It is very likely that you will want to abandon your leader in the future if (when) they do something silly that causes a drop in support

 You can get many samples today using a computer using population proportion is p=0.52

Which	no	yes	Sample	Sample	p-value
sample			size	propor	testing claim
Remember a cor		uter f	ound	tion	"p<0.52"
many samples using p=0.52					
sample 8	62	38	100	0.38	0.002537434
sample 2	55	45	100	0.45	0.080588895
sample 3	52	48	100	0.48	0.211669821
sample 5	49	51	100	0.51	0.42067765
sample 9	49	51	100	0.51	0.42067765

no	yes	Sample	Sample	p-value
		size	Proport	testing
omput	ter fo	ound	ion	p<0.52
using	р=0.	52		
53	53	106	0.5	0.340112
55	55	110	0.5	0.337294
56	56	112	0.5	0.335907
226	226	452	0.5	0.197358
227	227	454	0.5	0.196836
	no pmpud 53 55 56 226 227	no yes omputer for using p=0. 53 53 55 55 55 55 226 226 227 227	noyesSample sizemputer fourtsizemputer fourtsizesing p=0.52size535310655551105656112226226452227227454	noyesSample sizeSample Proportmputer foundionsing between stress100535310655551105656112226226452227227454

A computer was used to find 6000 samples, the p-value for each sample was calculated and summarized in the ogive below ogive, pvalue testing p<0.52 if p=0.52

Based on the students reactions to the fact the ogive of p-values is a straight line they can tell actually calculating p-values must be tricky because something must be making the ogive of p-value really simple, Basically a genius can imagine an infinite number of samples and work out the percentiles just using advanced maths

Usually if you have many variables you NEED to use a computer to find the p-values so the exact details are not important There are many hypothesis tests much more complicated than testing if p<0.52 but you can still explain them the same way

*Use a computer to check the accuracy of taking samples by getting many samples and get the p-value for each sample, The ogive of p-values will be a straight line

*Show the students different samples , they will notice the lower the p-value the stronger the evidence 3 benefits of explaining p-values by using an Ogive of p-values

Benefit 1:

It uses the concept "an ogive lets you see percentiles" instead of the concept

"probability", you need a Very strong background in probability to understand what a p-value is 3 benefits of explaining p-values by using an Ogive of p-values

Benefit 2:

It uses concept of "checking the accuracy of samples by getting many samples" instead of the concept the null hypothesis H_0

3 benefits of explaining p-values by using an Ogive of p-values

Benefit 3:

It is similar to a real world examples that use things that are much simpler than p-values In the previous slides explain the following

If a Political leader does something annoying you can get a single sample and use a single p-value to answer the question is "Has their popularity dropped"

The ogive of p-values based on samples before the leader did something annoying helped you interpret the p-value

The following situation will be explained by an Ogive like p-values are explained by an Ogive

"If someone in HR says something stupid on social media you have evidence sales have decreased if they unusually low the next day" Suppose Daily sales were 100 the day after someone in HR said something stupid on social media, Based on the Ogive below you do have evidence sales has dropped.

The "there is strong evidence the sales have decreased example" given on the previous slide is not about p-values which are complex it was about daily sales

This example is useful because it shows you can use a Ogive of many values in the past to work out if a single value in the future is strong evidence that things have changed. An ogive a past values clearly show what values were unusually low in the past

If you are using a p-value to measure evidence of a relationship an ogive of p-values when there is no relationship clearly shows what p-values are unusually low when there is no relationship

Revision of slide 7, whenever you use p-value

 If you get many samples when H₀ is true and you find the p-value for each sample, the ogive of p-value will look like

Ogive of pvalue if H0 is true

75% of p-values are less than 0.75 50% of p-values are less than 0.5 25% of p-values are less than 0.5 K% of p-values are less than K/100 Do you remember the definition of pvalue? Does the Ogive help explain it ?

Summary A low p-value is like something unusually low that is strong evidence

Most p-values are used to measure evidence of relationships, when there is a weak* relationship in the population the Ogive of many p-values will be a straight line and most pvalues will be around 0.5, If there is a strong relationship most pvalues will be close to 0 A relationship is weak* if the typical standard error is large enough to usually hide the relationship

Section 3 General tips on teaching inference Some textbook encourage teaching inference using simulation. Personally I am sure the vast majority of students do not understand inference until they see many samples and notice how different samples give different answers. Many students can do textbook questions without understanding p-values are a way of dealing with the problems samples have standard error.

Since you need to get many samples to teach inference you also should find the p-value for each sample as well and make the ogive of p-values.

Without too much effort you can roughly explain p-value without using probability or defining H_0 and H_1 .

Section 4:Additional Material

Formula for cdf of the F distribution, This was used to get the p-value

pvalue weak relationhip however sample size very large

Consider following dataset which column is unrelated to the other columns

	Α	В	С
1	Dwelling Type?	In Sydney?	coin toss?
2	F	Sydney	head
3	F	Sydney	head
4	F	Not Sydney	head
5	F	Sydney	tail
6	F	Sydney	head
262220	H	Not Sydney	tail

As you would expect there is no relationship between the variable dwelling type and coin toss

summary	₽ F		Н	Grand Total
head				
Count		74,552	56,617	131,169
%		56.84%	43.16%	100.00%
tail				
Count		74,299	56,751	131,050
%		56.70%	43.30%	100.00%
Total Count		148,851	113,368	262,219
Total %		56.77%	43.23%	100.00%

If sample size is always the same there will always be a linear relationship between rank of p-value and rank of effect size

and if H0 is true then rank of effect size will be proportional to p-value

*If you integrate a pdf you get a cdf

*A histogram is like a pdf you need the shaded area to find the percentile

*An Ogive is like a cdf , you find percentile using the height

References

Further reading

• Perezgonzalez, J. D. (2015). P-values as percentiles. Commentary on: "Null hypothesis significance tests. A mix—up of two different theories: the basis for widespread confusion and numerous misinterpretations". *Frontiers in psychology*, *6*, 341.

A website about teaching statistics,

https://www.causeweb.org/

You can search the site for simulation there are plenty of resources explaining the benefits of explaining inference Using simulation